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FRONTIER ORBITAL CONTROLLED CYCLOADDITION OF 2-AEAPENTALENES 
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Summary: It is shown that cycloadditions of 1,3-bis(dimethylamino)pentalenes and their Eaza- 
analogues with activated alkines are frontier orbital controlled whereas protonation 

is charge controlled. 

Formal [2+2]-cycloadditionsof pentalenes with activated alkines provide an interesting method 
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for the homologization of the 8s-electron system leading to azulenesl. 

1,3-Bis(dimethylamino)pentalene 1 2 reacts already at O°C with dimethyl acetylenedicarboxylate 2 - 

to give the azulene derivative 2 lb . In analogy to cycloadditions of enamines with L3, the 
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initially formed dipole 2 presumably undergoes cyclization to 4 which suffers valence isomeri- 

zation to 2. Contrary to this finding, the aza-analogue of 1, 1,3-bis(dimethylamino)-2-azapen- 

talene 64 _ , reacts with 2 in a completely different fashion. - Instead of a cycloadduct similar 

to 4 or its valence isomer &72% of the substitutive addition product dimethyl 1,3-bis(dimethyl 

amino)-2-azapentalen-5-yl-maleate 75 - is formed at O'C. Even if position 5 is substituted by a 

bulky group as in 8, products originating from the expected electrophilic attack of 2 at the - 

ring nitrogen, the position of highest electron density, could not be detected. Due to the 

blocking of the 5-position, 5-tert.butyl-1,3-bis(dimethylamino)-Z-azapentalene 8 combines with .- 

_2. at O°C to furnish in 65% yield dimethyl 2-tert.butyl-6,S-bis(dimethylamino)-5-azaazulene-4,5- 

dicarboxylate II (yellow crystals, mp 164'C, UV - 

237sh(4.o8), 252sh(4.13), 279(4.23), 340(4,44), 

(n-hexane): h max[nml (logs)= 2o7sh(4.17), 

381sh(3.96), 456(4.06))6 The structure of I1 - 
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was deduced from its 'H and 13 C nmr spectra7 ’ ( H-NMR (CDC13): 6= 1.25(s,9H), 3.oo(s,6H), 3.25 

(s,6H), 3.82(s,3H), 3.95(s,3D), 6.45(s,lH, J=PHz), 6.70(s,lH, J=2Hz); 13C-NMR (l::DC13) : 6= 

31.9((CH3)3C), 39.3 and 40.6(2(CH3)2N), 51.6 and 52.4(2 OCH3), 95.9(C-7), 114.8(C-3), 115.2 

(C-3a), 118.2(C-I), 121.6(C-8a), 146,6(C-2), 156.5(C-4), 157.9(C-6)) and confirmed by an x-ray 

8 analysis . Obviously 2 attacks 8 in the 3a- - - or 6a-position under formation of the dipolar 

intermediate 9 which reacts to the tricyclic system lo. - A following valence isomerization 

leads to 11 _* 
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The different pathways of the reactions of 1_, 6, and 8 with 2 can be explained by the dominance - 

of the frontier orbital contribution 9 over the charge controlling term in the perturbation 

IO treatment of chemical reactivity . Only if the Coulomb potential exceeds the frontier inter- 

action the various net charges determine the course of the reaction. In case of frontier orbi- 

tal control one has to analyse the localization of the highest donor orbitals in the pentalene 

series 1, 5, and 8. . - 

The general characteristics of the calculated net charges (charge control) and the LCAO ampli- 

tudes of the HOMO (frontier control) are quite insensitive with respect to the calculation 

procedure involved. The results can be rationalized by HMO 
11 or by semiempirical LCAO calcu- 

lations(e.g. EHT12). In Fig. 1 the EHT net charges and in Fig. 2 the LCAO wave functionsof the 

HOMO of the pentalenes are shown. 
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Figure I: EHT net charges of I_, 2, and 8 - 
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Figure 2: LCAO coefficients of the HOMO of I_, 5, and 8 - 

Inspection of both figures demonstrates that the reaction products of the additions are deter- 

mined by frontier orbital control. If charge control would be the product determining factor, 

not only 1 should be attacked at position 2 but also 6as well as 8 at the hetero atom. Fig. 2 - - - - 
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shows that the adduct formations with 2 are influenced by frontier orbital interaction which - 

leads in case of 1 tobondformation at C-2 followed by the closure of the four-membered ring - at 

the electron-deficient centers C-l or C-3. In the azapentalene 5 the HOMO is predominantly loca- 

lized at C-5; thus frontier controlled attack is favoured at this position. In contrast to the 

reaction of 1 with 2 here the second step requires higher activation energy as the positions 4 

and 6 carry higher net charges than I and 3 in the pentalene 1 _' Also in 8 the localization of 

the HOMO shows its maximum at C-5. The observed reaction product 11 is the result of a compro- - 

mise between steric hinderance and maximum frontier orbital interaction, which is more efficient 

at C-3a and C-6a in comparison with N-2. 

This shows that the experimental results of the reactions of 1, 6, and 8 with 2 can be explained - - 

by the dominance of frontier orbital interaction in comparison with charge control, On the other 

hand, charge control is active in the protonation of the pentalenes, e.g. electrophilic attack 

takes place at the electron-rich centers 224 . 
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